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Abstract. Recently the associated Camassa–Holm (ACH) equation, related to the Fuchssteiner–
Fokas–Camassa–Holm equation by a reciprocal transformation, was introduced by Schiff, who
derived B̈acklund transformations by a loop group technique and used these to obtain some simple
soliton and rational solutions. We show how the ACH equation is related to Schrödinger operators
and KdV, and describe how to construct solutions of ACH from tau-functions of the KdV hierarchy.
Rational,N -soliton and elliptic solutions are considered, as well as exact solutions given by a
particular case of the third Painlevé transcendent.

1. Introduction

A great deal of interest has been generated by the Fuchssteiner–Fokas–Camassa–Holm (FFCH)
equation,

uT = 2fXu + f uX u = 1
2fXX − 2f (1.1)

(for comparison we take the choice of coefficients in [27]), which originally appeared in the
work of Fuchssteiner and Fokas [12], but was later derived as an equation for shallow water
waves by Camassa and Holm [6]; recently it has been shown to be a particular case of a
class of models for ideal fluids [17]. Of particular importance was the discovery [6] that
(1.1) admits peaked solitons or ‘peakons’, described in terms of solutions of an associated
integrable finite-dimensional dynamical system which has subsequently been related to the
Toda lattice [5]. Although the FFCH equation is integrable, and has been shown [13] to be
related by a reciprocal transformation to the first negative flow of the KdV hierarchy (also
known as the AKNS equation [1]),

R(U)Ut = 0 R(U) = ∂2
x + 4U + 2Ux∂

−1
x (1.2)

it has many non-standard features (for instance, it only possesses the weak Painlevé property
[15]) and there is still much to be understood about its solutions.

Inspired by [13], Schiff introduced the associated Camassa–Holm (ACH) equation [27]

pt = p2fx f = p

4
(logp)xt − p

2

2
(1.3)

which (for positiveu) has a one to one correspondence with solutions of the FFCH equation
(1.1) given by

p = √u dx = p dX + pf dT dt = dT (1.4)
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(the independent variablesx, t of ACH are denotedt0, t1 in [27]); a solution of ACH wherep
has zeros corresponds to a number of solutions of (1.1) whereu has fixed sign. For more details
on reciprocal transformations such as (1.4) see [11, 25]. In [27], a loop group interpretation
was given for (1.3), making use of the fact that it is the (zero curvature) compatibility condition
for the linear system(

ψ1

ψ2

)
x

=
(

0 1/p
p/λ + 1/p 0

)(
ψ1

ψ2

)
(1.5)(

ψ1

ψ2

)
t

=
(−pt/2p λ

λ− 2f pt/2p

)(
ψ1

ψ2

)
(1.6)

and it was indicated that this ACH equation is part of an integrable hierarchy of zero-curvature
equations. Automorphisms of the loop group were used to derive two Bäcklund transformations
(BTs) for (1.3), these were applied to the constant background solutionp = h to obtain
some simple solutions, and by applying the hodograph transformation (1.4) apparently novel
solutions of the FFCH equation (1.1) were generated.

In the following we show that since the hodograph transformation is essentially the same
as in [13], the ACH equation is naturally related to the inverse KdV equation (1.2) and has a
Lax pair of which one part is just a (time-independent) Schrödinger equation. This connection
yields a straightforward derivation of the BTs presented in [27], and further leads to a simple
recipe for constructing solution of ACH from tau-functions of the KdV hierarchy. Some of
these results first appeared in [19].

2. Basic properties of ACH equation

2.1. Lax pair and tau-function

The ACH equation (1.3) may be rewritten as

Ut = −2px U = −1

2

(
ppxx − 1

2p
2
x + 2

p2

)
. (2.1)

This leads directly to a connection with the KdV hierarchy. In fact, by writingp = − 1
2∂
−1
x Ut ,

it follows thatU satisfies the inverse KdV equation (1.2). This suggests that there should be a
direct link with Schr̈odinger operators, and indeed this is the case†.

Settingφ = p 1
2ψ1 (and usingψ2 = pψ1,x) in (1.5), (1.6) leads to the Lax pair

(∂2
x +U − 1/λ)φ = 0 (2.2)

φt = λ(pφx − 1
2pxφ). (2.3)

The two compatibility conditions for this Lax pair (assuming thatU is as yet undefined) are
simply the first equation forUt in (2.1) and

(∂3
x + 4U∂x + 2Ux)p = 0 (2.4)

and it is an immediate consequence thatU satisfies (1.2). The latter third-order equation for
p can be integrated once to give

ppxx − 1
2p

2
x + 2Up2 + F(t) = 0. (2.5)

Equation (2.5) is known as the Ermakov–Pinney equation (see [9] and references). The function
F(t) is arbitrary, but it is clear that the ACH equation (with the definition ofU as in (2.1))

† I am grateful to Decio Levi and Orlando Ragnisco for pointing this out.



Letter to the Editor L309

corresponds to the particular choiceF = 2. ProvidedF 6= 0 it is always possible to rescalep
by
√
F(t)/2 and redefinet to obtain the form (2.1).

We can define the tau-functionσ of ACH by

p(x, t) = −(logσ)xt .

From the ACH equation in the form (2.1) we can integrate once to find the standard KdV
formula for the potential of the Schrödinger operator:

U(x, t) = 2(logσ)xx.

Substituting forp,U in (2.4) yields a trilinear equation inx, t for the tau-functionσ , namely

σ4x,tσ
2 − 4σ3x,tσxσ + 2σxxtσxxσ − σtσ4xσ + 4σxxtσ

2
x − 4σxtσxσxx + 4σtσxσ3x

−2σtσ
2
xx = 0

which is a reduction of the trilinear appearing in [28]. Hirota and Satsuma [16] obtained
bilinear equations for the tau-function of the AKNS equation, but this required the introduction
of another independent variable (corresponding to thet3 flow of KdV). The result proved in
section 3 below, implies that suchσ may be found by applying a gauge transformation to a
tau-function of the KdV hierarchy,τ = exp[x2/(4h2) + hxt ]σ .

2.2. B̈acklund transformations

By the use of loop group techniques, Schiff [27] derived two BTs for the ACH equation. The
first of these BTs is

p̃ = p − sx sx = −(pλ)−1s2 + λp−1 + p st = −s2 + (logp)t s + λ(λ− 2f ) (2.6)

whereλ is a B̈acklund parameter. A superposition principle was also found for this BT, leading
to a formula for the two-soliton solution of ACH. Schiff’s second BT may be written (after
some simplification) as

p̃ = p − (logχ)xt (pBx)x = B(p−1 + pλ−1) Bt = − 1
2(logp)tB + pλBx (2.7)

whereχ is determined from the first-order equations

χx = pλ−1B2 χt = λ(p2B2
x − B2).

We observe that (as also noted in [27]) the equations forB in (2.7) follow from the
linearization of the first Riccati equation in (2.6) via the substitutions = pλ(logB)x ; this
linearization is just the linear problem (1.5) when we identifyB = ψ1. The second BT actually
gives nothing new, as it is equivalent to applying (2.6) twice with the same Bäcklund parameter
each time. So we concentrate on the first BT, noting that the second Riccati equation in (2.6)
is linearized by the substitutions = (logφ)t , and then we see that the BT (2.6) is equivalent to

p̃ = p − (logφ)xt

whereφ is a solution of the Lax pair (2.2), (2.3). In fact, a tedious direct calculation shows
that under this BT the potential of the Schrödinger operator becomes

Ũ = U + 2(logφ)xx

and also that̃φ = φ−1 is a solution of the same Lax pair withU,p replaced byŨ , p̃. Hence the
first BT (2.6) derived by Schiff is equivalent to the well known Crum transformation obtained
by factorization of the Schrödinger operator [2], which gives the standard Darboux–Bäcklund
transformation for the KdV hierarchy.
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3. Solutions of ACH from KdV

The KdV hierarchy (see e.g. [22]) is the sequence of evolution equations

qt2j−1 = 2(Pj [q])t1 (3.1)

(for j = 1, 2, 3, . . .), which arise as the compatibility condition for the Schrödinger equation

(∂2
t1

+ q)φ = µ2φ (3.2)

with the sequence of linear problems

φt2j+1 = 5jφt1 − 1
25j,t1φ 5j [q;µ] :=

j∑
k=0

Pj−k[q]µ2k P0 = 1 (3.3)

(for j = 0, 1, 2, . . .). The t2j−1 are the times of the hierarchy (the odd times of the KP
hierarchy [23]), and the differential polynomialsPk[q] are the Gelfand–Dikii polynomials [14],
which can be defined recursively using a form of the Ermakov–Pinney equation (2.5). Also,
in terms of the tau-functionτ(t1, t3, t5, . . .) of the hierarchy,q and thePj are given by

q = 2(logτ)t1t1 Pj = (logτ)t1t2j−1. (3.4)

This tau-function satisfies a sequence of bilinear equations [23], but we shall not make use of
these here.

To make the connection with the ACH equation we simply observe that for a solution of
ACH satisfyingp→ h at infinity, it is clear thatU as defined in (2.1) satisfiesU → −1/h2.
Thus, considering the Schrödinger equation (2.2) with such a potentialU is instead equivalent
to taking a Schr̈odinger equation (3.2) with potentialq vanishing at infinity, when we identify

q = U + 1/h2 µ =
√

1

h2
+

1

λ
. (3.5)

This suggests the following proposition.

Proposition. Given a tau-functionτ(t1, t3, t5, . . .) for a solutionq(t1, t3, t5, . . .) of the KdV
hierarchy, a corresponding solution of the ACH equation (2.1) is given by

p = h− (logτ)xt t1 = t̃1 + x − h3t t2j+1 = t̃2j+1− h2j+3t (j > 1) (3.6)

(with t̃2j+1 independent ofx, t). The corresponding Schrödinger potential is given by

U = q − 1/h2 = −1/h2 + 2(logτ)xx.

This implies that vanishing solutions of KdV (withq → 0 as|t1| → ∞) yield solutions
of ACH on constant backgroundh, but the result is valid for non-vanishingq as well. The
proof of the proposition is very straightforward, for using (3.6) and (3.4) we see that we can
write

p = h +
∞∑
j=1

h2j+1(logτ)t1t2j−1 =
∞∑
j=0

Pjh
2j+1.

Series of this type are a standard tool for obtaining recursive formulae for the flows of integrable
hierarchies based on Schrödinger operators (see [3], for instance). The right-hand equation in
(2.1) (the Ermakov–Pinney equation) is naturally rewritten as

ppt1t1 − 1
2p

2
t1

+ 2(q − 1/h2)p2 + 2= 0

and by expanding in powers ofh the recursion relations for the Gelfand–Dikii polynomialsPj
are obtained. Hencep, as defined above, is automatically a solution of this Ermakov–Pinney
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equation, and writing everything in terms of the tau-function the ACH equation itself (the
left-hand equation in (2.1)) is just the tautology 2(logτ)xxt = 2(logτ)xtx .

It is also fairly simple to show that, providedµ is identified as in (3.5),φ satisfying (3.2)
and the sequence of linear problems (3.3) provides a solution to the ACH Lax pair (2.2), (2.3)
(thus providing an alternative proof of the proposition). In order to show that (2.3) is satisfied,
it is necessary to write

φt = −
∞∑
j=0

h2j+3φt2j+1 = −
∞∑
j=0

h2j+3(5jφt1 − 1
25j,t1φ)

expanding each5j inµand resumming by use of the geometric seriesλ = −h2(1−µ2h2)−1 =
−∑∞k=0 h

2j+2µ2j ; noting thatt1 derivatives may be replaced byx derivatives, (2.3) results.

4. Exact solutions

4.1. Rational and soliton solutions

Rational and soliton solutions are easily obtained with the use of the above proposition.
Rational solutions of KdV correspond to tau-functionsτ (k) which are most easily expressed
as Wronskian determinants of odd Schur polynomials,

τ (k) = [p2k−1, p2k−3, . . . , p1]

for k = 1, 2, 3, . . . . The sequence of Schur polynomials may be defined by a generating
function,

∑∞
l=0plν

l = exp(
∑∞

j=1 tj ν
j ) (see e.g. [23]). The above Wronskians are independent

of the even timest2k, and we are using the notation [. . .] to denote the Wronskian as in [18].
Thus, we find the sequence of rational solutions of ACH,

p(k) = h− (logτ (k))xt

where thetj are given in terms ofx, t as in (3.6). After rescaling theseτ (k) are the same as the
Adler–Moser polynomialsθk [2] obtained by application of the Crum transformation. Hence
these rational solutions of ACH may also be obtained by repeated use of Schiff’s first BT (2.6)
with Bäcklund parameterλ = −h2, starting from the trivial solutionp = h.

It is also well known that soliton tau-functions can be written as Wronskian determinants
[23,26]. For KdV theN -soliton tau-function is built out ofN functionsηj of the form

ηj = expξ(t1, t3, . . . ;µj) + cj expξ(t1, t3, . . . ;−µj)
where ξ(t1, t3, . . . ;µ) =

∑∞
k=1 t2k−1µ

2k−1. Using the expressions (3.6) for thet2j−1, and
definingλj = −h2(1−µ2

jh
2)−1 (which may be written as a geometric series as in the previous

section), we find

ηj = exp

(√
1

h2
+

1

λj
(x − hλj t + xj )

)
+ cj exp

(
−
√

1

h2
+

1

λj
(x − hλj t + xj )

)
for xj , cj constants. Then theN -soliton solution of the ACH equation may be written as

p(N) = h− (logW(N))xt W(N) = [η1, η2, . . . , ηN ]

(where all thet1 derivatives from the KdV Wronskian formula [26] may be replaced byx

derivatives). TheN -soliton solutions of the AKNS equation found in [16] are obtained from
the above formulae in the particular caseh = 1.
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4.2. Elliptic solutions

The general travelling wave solution of the ACH equation (also mentioned in [27]) is given in
terms of the Weierstrass℘-function [29],

p(x, t) = −c(℘ (x − ct)− ℘(κ)) (4.1)

with κ constant such that℘ ′(κ) = 2c−1. For this solution we haveU = −2℘(x− ct)−℘(κ).
The corresponding travelling wave solution of the the FFCH equation (1.1) is

f (X, T ) = −(℘ (ρ)− ℘(κ))−1− c
2

4
℘ ′′(κ)

where (by standard identities for Weierstrass functions [29])ρ = ρ(X, T ) is determined from

X − c
2

4
℘ ′′(κ)T = −ζ(κ)ρ +

1

2
log

σ(κ + ρ)

σ(κ − ρ) .

In the light of known results on KdV [21], the form of the solution (4.1) suggests that we
should consider the ansatz

p = −
N∑
j=1

ẋj℘ (x − xj ) + k (4.2)

where the polesxj = xj (t) depend on time,k is constant anḋxj = d
dt xj . Then we take

U = −2
N∑
j=1

℘(x − xj ) + `

(for constant̀ ) and substitute in (2.4). After some cancellation the resulting equation has
third-order, double and simple poles atx = xj for eachj . The residues at the third-order poles
yield the matrix equation

Mv = ke (4.3)

whereM is the symmetric matrix with entries

Mjj = −` + 2
∑
k 6=j

℘ (xj − xk) Mjk = ℘(xj − xk) (j 6= k)

andv = (ẋ1, ẋ2, . . . , ẋN )
T , e = (1, 1, . . . ,1)T . At the second-order poles we find∑

k 6=j
℘ ′(xj − xk) = 0 (4.4)

for eachj , while the residue at the simple pole is just thet derivative of this constraint.
Comparing with [21] we see that (4.4) are just the standard KdV constraints on the elliptic

Calogero–Moser system, corresponding to stationarity with respect to thet2 flow generated by
the Hamiltonian

H2 = 1
2

N∑
j=1

π2
j + g2

∑′

j,k

℘ (xj − xk)

(πj denote momenta,g2 is a coupling constant, and
∑′means sum withj 6= k). So we see that

ACH admits elliptic solutions of the form (4.2) with poles moving according to a constrained
Calogero–Moser system (4.3), which must correspond to the first negative Calogero–Moser
flow subject to the KdV constraints (4.4). A detailed study of the solutions of these constraints
has been made recently by Deconinck and Segur [10].
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4.3. Solutions in terms of PIII

The ACH equation has a scaling similarity reduction

p = (2t)− 1
2w(z) z = (2t) 1

2x

wherew(z) satisfies the ODE

w′′ = (w′)2

w
− w

′

z
+

1

z
(2w2 + β)− 4

w
(4.5)

′ denotes d/dz andβ is an arbitrary constant. This ODE is a special case of the Painlevé
transcendent PIII, which (with the standard form taken in [4]) corresponds to the choice of
parametersα = 2, γ = 0, δ = −4 (andβ remaining arbitrary). The symmetry reduction
of the AKNS equation to PIII has also been found in [8]. The corresponding solution of the
FFCH equation (1.1) is given by

f (X, T ) = (2T )−1(β/4− z/w(z))
with z = z(X, T ) determined implicitly from

X +
β

8
logT =

∫ z dy

w(y)
.

PIII has a large number of BTs, and some special exact solutions, which are systematically
catalogued in [4]. However, for the choice of parameters relevant here, the only BTs that survive
are one referred to in [4] as transformation V,

w̃ = zw′

w2
− β + 2

2w
+

2z

w2

together with its inverse

w̄ = −zw
′

w2
− β − 2

2w
+

2z

w2
.

These BTs send a solutionw to (4.5) for parameterβ to another solutioñw, w̄ with parameter
β + 4, β − 4, respectively, and may be obtained by reduction of the BT (2.6) (the Crum
transformation) in the caseλ = ∞.

For this choice of parameter values there is a hierarchy of special solutions rational inz
1
3 ,

which can be obtained by applying the BTs to the seed solutionw0 = (2z) 1
3 for β = 0. For

example, forβ = ±4 (4.5) admits the particular solutions

w±4 = 2
1
3 z

1
3 ∓ 1

32
2
3 z−

1
3 .

Other solutions in this hierarchy can be obtained from table 6 of [4] (on setting the parameters
µ = 2, κ = 2

1
3 ).

Okamoto [24] has introduced Hamiltonians for the Painlevé equations, given as the
logarithmic derivative of a tau-function. However, the caseγ = 0 of PIII relevant here is
excluded in [24]. Nevertheless, it is still possible to take the Hamiltonian

H = z−1w2π2 + (2− 1
2(β − 2)wz−1)π − w

for this degenerate case (withπ denoting the momentum conjugate tow), with tau-function
τ(z) such that

H(z) = d
dz logτ(z).

This is not quite the same as the tau-functionσ introduced in section 2 (we conjectured this
in [19]). For the similarity reduction we requireσ = σ(z) and then we find

w = −z(logσ)′′ − (logσ)′ w̄ = −2π = −z(log σ̄ )′′ − (log σ̄ )′

(wherew̄ is obtained by the action of the second BT above), which leads to

τ = σ σ̄ .
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5. Conclusions

We have shown how the ACH equation introduced by Schiff is related to the KdV hierarchy,
and used this connection to construct a variety of exact solutions. We have also found solutions
in terms of a particular case of the Painlevé transcendent PIII. By the use of the hodograph
transformation (1.4) these solutions of the ACH equation yield solutions of the FFCH equation
(1.1), and it would be interesting to study the transformed solutions. We have also found [20]
that similar methods apply to the 2 + 1 generalization of the FFCH equation introduced in [7].
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for useful discussions. I would also like to thank Sergei Manakov and others present at the
Integrable Systems Seminar of Roma ‘La Sapienza’ for helpful comments. I am very grateful
to the Leverhulme Trust for giving me a Study Abroad Studentship in Rome, and to the ARC
of Australia for my International Research Fellowship in Adelaide.
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