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Abstract. Recently the associated Camassa—Holm (ACH) equation, related to the Fuchssteiner—
Fokas—Camassa—Holm equation by a reciprocal transformation, was introduced by Schiff, who
derived Backlund transformations by a loop group technique and used these to obtain some simple
soliton and rational solutions. We show how the ACH equation is related té@&iciger operators

and KdV, and describe how to construct solutions of ACH from tau-functions of the KdV hierarchy.
Rational, N-soliton and elliptic solutions are considered, as well as exact solutions given by a
particular case of the third Painkewranscendent.

1. Introduction

A greatdeal of interest has been generated by the Fuchssteiner—Fokas—Camassa—Holm (FFCH)
equation,

ur =2fxu+ fuy u=73fxx —2f (1.1)

(for comparison we take the choice of coefficients in [27]), which originally appeared in the
work of Fuchssteiner and Fokas [12], but was later derived as an equation for shallow water
waves by Camassa and Holm [6]; recently it has been shown to be a particular case of a
class of models for ideal fluids [17]. Of particular importance was the discovery [6] that
(1.1) admits peaked solitons or ‘peakons’, described in terms of solutions of an associated
integrable finite-dimensional dynamical system which has subsequently been related to the
Toda lattice [5]. Although the FFCH equation is integrable, and has been shown [13] to be
related by a reciprocal transformation to the first negative flow of the KdV hierarchy (also
known as the AKNS equation [1]),

R(U)U, =0 R(WU) = 3*+4U +2U,37* (1.2)

it has many non-standard features (for instance, it only possesses the weakéRaioferty
[15]) and there is still much to be understood about its solutions.
Inspired by [13], Schiff introduced the associated Camassa—Holm (ACH) equation [27]
2

pr = DP°fs f= %(log Pt — %

which (for positiver) has a one to one correspondence with solutions of the FFCH equation
(2.1) given by

p=u dx = pdX + pfdT dr =dT (1.49)

(1.3)
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(the independent variablest of ACH are denotea, 71 in [27]); a solution of ACH where

has zeros corresponds to a number of solutions of (1.1) witeaes fixed sign. For more details

on reciprocal transformations such as (1.4) see [11, 25]. In [27], a loop group interpretation
was given for (1.3), making use of the fact that it is the (zero curvature) compatibility condition
for the linear system

Y1) 0 1/p Y1
<¢2>X"<p/x+1/p 0 )<¢q> (1.5)

2 . —p:/2p A Y
(w)g‘(x—%‘pdw)<w> (1.6)

and it was indicated that this ACH equation is part of an integrable hierarchy of zero-curvature
equations. Automorphisms of the loop group were used to derive &sklBnd transformations
(BTs) for (1.3), these were applied to the constant background solptien 4 to obtain
some simple solutions, and by applying the hodograph transformation (1.4) apparently novel
solutions of the FFCH equation (1.1) were generated.

In the following we show that since the hodograph transformation is essentially the same
as in [13], the ACH equation is naturally related to the inverse KdV equation (1.2) and has a
Lax pair of which one part is just a (time-independent) 8dimger equation. This connection
yields a straightforward derivation of the BTs presented in [27], and further leads to a simple
recipe for constructing solution of ACH from tau-functions of the KdV hierarchy. Some of
these results first appeared in [19].

2. Basic properties of ACH equation

2.1. Lax pair and tau-function

The ACH equation (1.3) may be rewritten as

1 xx_l- 2+2
U =—2p, U=-—=(Ex"2P72) 2.1)
2 p2

This leads directly to a connection with the KdV hierarchy. In fact, by wripng —%ax‘lUt,
it follows thatU satisfies the inverse KdV equation (1.2). This suggests that there should be a
direct link with Schdinger operators, and indeed this is the caset.

Settingy = p%l//j_ (and usingy, = py1,) in (1.5), (1.6) leads to the Lax pair

(3?+U —1/M)¢p =0 (2.2)
b = M(pds — 3Px). (2.3)

The two compatibility conditions for this Lax pair (assuming thats as yet undefined) are
simply the first equation fob/, in (2.1) and

(@2+4Ud, +2U,)p =0 (2.4)

and it is an immediate consequence thiasatisfies (1.2). The latter third-order equation for
p can be integrated once to give

PP — 3P+ 2Up*+ F(1) = 0. 2.5)

Equation (2.5) is known as the Ermakov—Pinney equation (see [9] and references). The function
F(v) is arbitrary, but it is clear that the ACH equation (with the definitiorUo&s in (2.1))

t I'am grateful to Decio Levi and Orlando Ragnisco for pointing this out.
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corresponds to the particular choiEe= 2. ProvidedF # 0 it is always possible to rescate
by «/F(t)/2 and redefine to obtain the form (2.1).
We can define the tau-functienof ACH by

p(x,1) = —(10g0)y.

From the ACH equation in the form (2.1) we can integrate once to find the standard KdV
formula for the potential of the Sobdinger operator:

U(x,t) =2(10g0),.
Substituting forp, U in (2.4) yields a trilinear equation in, 7 for the tau-functioro, namely
G4x,102 - 4(73)5,10'){0’ + Zaxxtaxxa — 0;04,0 + 40xxta)(2 - 4Gxt0.x0xx + 4Ut0x03x

—20,0%. =0
which is a reduction of the trilinear appearing in [28]. Hirota and Satsuma [16] obtained
bilinear equations for the tau-function of the AKNS equation, but this required the introduction
of another independent variable (corresponding tadtilow of KdV). The result proved in

section 3 below, implies that suehmay be found by applying a gauge transformation to a
tau-function of the KdV hierarchy, = exp[x?/(4h?) + hxt]o.

2.2. Backlund transformations

By the use of loop group techniques, Schiff [27] derived two BTs for the ACH equation. The
first of these BTs is

p=p—s se = —(p) 2 +ap i+ p se = —s2+(log p)is + A(h — 2f) (2.6)

wherel is a Backlund parameter. A superposition principle was also found for this BT, leading
to a formula for the two-soliton solution of ACH. Schiff’s second BT may be written (after
some simplification) as

p=p—(0gx)  (pBIx=B(pt+pr™"  Bi=—3(0gp)B+piB. (2.7)
wherey is determined from the first-order equations
x:=pA'B®>  x,=A(p*B?— B.

We observe that (as also noted in [27]) the equationsBfan (2.7) follow from the
linearization of the first Riccati equation in (2.6) via the substitutiog pA(log B),; this
linearization is just the linear problem (1.5) when we idensify= 1. The second BT actually
gives nothing new, as itis equivalent to applying (2.6) twice with the safo&lBnd parameter
each time. So we concentrate on the first BT, noting that the second Riccati equation in (2.6)
is linearized by the substitution= (log ¢),, and then we see that the BT (2.6) is equivalent to

p=p— (loge),

where¢ is a solution of the Lax pair (2.2), (2.3). In fact, a tedious direct calculation shows
that under this BT the potential of the Sodinger operator becomes

U =U+2(log¢)
and also thap = ¢~Lis a solution of the same Lax pair with, p replaced by, p. Hence the
first BT (2.6) derived by Schiff is equivalent to the well known Crum transformation obtained
by factorization of the Scldinger operator [2], which gives the standard DarbolackBund
transformation for the KdV hierarchy.
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3. Solutions of ACH from KdV

The KdV hierarchy (see e.qg. [22]) is the sequence of evolution equations

qizj,j_ = 2(P][q])l‘1 (31)
(for j =1,2,3,...), which arise as the compatibility condition for the Satinger equation
OF +9)¢ = u’¢ (3.2)

with the sequence of linear problems

J
Prpo =ity — 3500 Tlgs ] i= D> Pialqgln®  Po=1 (3.3)
k=0

(for j = 0,1,2,...). Ther;_, are the times of the hierarchy (the odd times of the KP
hierarchy [23]), and the differential polynomiats[¢] are the Gelfand—Dikii polynomials [14],
which can be defined recursively using a form of the Ermakov—Pinney equation (2.5). Also,
in terms of the tau-functiom(z,, t3, s, . . .) of the hierarchyg and theP; are given by

q = 2('091’){1[1 P] = (Iog T)t1lzj,1‘ (34)

This tau-function satisfies a sequence of bilinear equations [23], but we shall not make use of
these here.
To make the connection with the ACH equation we simply observe that for a solution of
ACH satisfyingp — h at infinity, it is clear that/ as defined in (2.1) satisfiés — —1/h2.
Thus, considering the Sabtinger equation (2.2) with such a potentials instead equivalent
to taking a Schidinger equation (3.2) with potentiglvanishing at infinity, when we identify
5 11

q=U+1/h U= h2+)\‘ (3.5)

This suggests the following proposition.

Proposition. Given a tau-functiorr (z1, t3, s, . . .) for a solutiong (¢4, t3, s, . . .) of the KdV
hierarchy, a corresponding solution of the ACH equation (2.1) is given by

p=nh—(logt), t=1 +x —h toje1 = foja1 — W73t (=1 (3.6)
(with 72;+1 independent af, 7). The corresponding Scbdinger potential is given by
U=gq—1/h?=—-1/h?+2(10g71),,.

This implies that vanishing solutions of KdV (with— 0 as|z;| — oo) yield solutions
of ACH on constant backgrounid but the result is valid for non-vanishingas well. The
proof of the proposition is very straightforward, for using (3.6) and (3.4) we see that we can
write

oo

o0
p=h+ Y KHogr),, , = Y PR
j=0

j=1

Series of this type are a standard tool for obtaining recursive formulae for the flows of integrable
hierarchies based on Sédinger operators (see [3], for instance). The right-hand equation in
(2.1) (the Ermakov—Pinney equation) is naturally rewritten as

PPun — 3P +2(g — 1/h*)p*+2=0

and by expanding in powers ffthe recursion relations for the Gelfand—Dikii polynomi&ls
are obtained. Hencg, as defined above, is automatically a solution of this Ermakov—Pinney
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equation, and writing everything in terms of the tau-function the ACH equation itself (the
left-hand equation in (2.1)) is just the tautolog§®@) t),,, = 2109 T) s -

It is also fairly simple to show that, providedis identified as in (3.5) satisfying (3.2)
and the sequence of linear problems (3.3) provides a solution to the ACH Lax pair (2.2), (2.3)
(thus providing an alternative proof of the proposition). In order to show that (2.3) is satisfied,
it is necessary to write

o0 (o]
¢ =— Y W3¢, == ¢, — 311;,0)
j=0 =0

j=

expanding eacH ; in .« and resumming by use of the geometric sexies —h?(1—u?h?)~1 =
— >0 o h¥*2 %/ noting thatr, derivatives may be replaced byderivatives, (2.3) results.

4. Exact solutions

4.1. Rational and soliton solutions

Rational and soliton solutions are easily obtained with the use of the above proposition.
Rational solutions of KdV correspond to tau-functiart§ which are most easily expressed
as Wronskian determinants of odd Schur polynomials,

W= [P2x—1, P23, ..., pil

fork = 1,2,3,.... The sequence of Schur polynomials may be defined by a generating
function,}";%, pv' = exp(}_72; ;v/) (see e.g. [23]). The above Wronskians are independent
of the even times,;, and we are using the notation [] to denote the Wronskian as in [18].
Thus, we find the sequence of rational solutions of ACH,

p® =h—(ogt®),,

where the; are given in terms of, 7 as in (3.6). After rescaling thesé® are the same as the
Adler—Moser polynomialg, [2] obtained by application of the Crum transformation. Hence
these rational solutions of ACH may also be obtained by repeated use of Schiff’s first BT (2.6)
with Backlund parameter = —h?, starting from the trivial solutiop = A.

Itis also well known that soliton tau-functions can be written as Wronskian determinants
[23,26]. For KdV theN-soliton tau-function is built out oV functionsy; of the form

nj = exps(tlv 13, ... M]) + Cj exps(tlv 13, ... _,U/J)

where &(t1,t3,...; 1) = Y ooq 1?71 Using the expressions (3.6) for the_;, and
defining; = —h*(1— p%h?)~* (which may be written as a geometric series as in the previous
section), we find

/1 1 /1 1
nj =eXp< ﬁ +)\'—j(x —]’l)»jl+)€j)> tcj eXp(— ﬁ +)\'—j(x —h)\,jl+)€j))

for x;, c; constants. Then th¥-soliton solution of the ACH equation may be written as

p(N) =h — (log W(N)). W(N) = [n1,m2, ..., nv]

(where all thet; derivatives from the KdV Wronskian formula [26] may be replacedxby
derivatives). TheV-soliton solutions of the AKNS equation found in [16] are obtained from
the above formulae in the particular case- 1.
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4.2. Elliptic solutions

The general travelling wave solution of the ACH equation (also mentioned in [27]) is given in
terms of the Weierstrags-function [29],

px, 1) = —c(p(x —ct) — o (k) 4.1)

with « constant such that’ («) = 2¢~2. For this solution we havll = —2p (x — ct) — g (k).
The corresponding travelling wave solution of the the FFCH equation (1.1) is

2
FX.T)=—(p(p) — oK)t — Czp“(x)

where (by standard identities for Weierstrass functions [29}) p (X, T) is determined from

2

X = GoOT = ~1()p+ S log T2

ok —p)
In the light of known results on KdV [21], the form of the solution (4.1) suggests that we
should consider the ansatz

N
p:—zxjp(x—xj)+k (4.2)
=1

where the poles; = x;(t) depend on time is constant and; = ;. Then we take

U=-2

N
P (x—x))+2

j=1
(for constant¢) and substitute in (2.4). After some cancellation the resulting equation has

third-order, double and simple poleswat= x; for eachj. The residues at the third-order poles
yield the matrix equation

Mv = ke (4.3)
whereM is the symmetric matrix with entries
Mjj=—t+2) ok —x)  Mp=pb;—x)  (#k
k]
andv = (x1, %2, ..., xy)7, e =(1,1,...,DT. At the second-order poles we find
Zp’(xj —x)=0 (4.4)
k£

for eachj, while the residue at the simple pole is just théerivative of this constraint.
Comparing with [21] we see that (4.4) are just the standard KdV constraints on the elliptic

Calogero—Moser system, corresponding to stationarity with respect toftoe generated by

the Hamiltonian

N
/
Hp = %Zﬂjz*'gzz o (xj — xz)

j=1 jk

(r; denote momentg? is a coupling constant, arldd’ means sum witli # k). So we see that

ACH admits elliptic solutions of the form (4.2) with poles moving according to a constrained
Calogero—Moser system (4.3), which must correspond to the first negative Calogero—Moser
flow subject to the KdV constraints (4.4). A detailed study of the solutions of these constraints
has been made recently by Deconinck and Segur [10].
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4.3. Solutions in terms of PIII

The ACH equation has a scaling similarity reduction
p=@) tw@)  z=(nkx
wherew(z) satisfies the ODE
N2 / 1 4
w = W Lo 2 (4.5)
w Z Z w
" denotes ddz and 8 is an arbitrary constant. This ODE is a special case of the Painlev
transcendent PIII, which (with the standard form taken in [4]) corresponds to the choice of
parametersx = 2,y = 0,8 = —4 (andB remaining arbitrary). The symmetry reduction
of the AKNS equation to PIlll has also been found in [8]. The corresponding solution of the
FFCH equation (1.1) is given by
fX,T)=@D)7HB/4— z/w(2))
with z = z(X, T) determined implicitly from
X+élogT=/“d—y.
8 w(y)
Plll has alarge number of BTs, and some special exact solutions, which are systematically

cataloguedin[4]. However, for the choice of parameters relevant here, the only BTs that survive
are one referred to in [4] as transformation V,

. W _ﬁ+2+22

T ow? 2w w?
together with its inverse

These BTs send a solutianto (4.5) for paramete$ to another solutior, w with parameter
B +4, 8 — 4, respectively, and may be obtained by reduction of the BT (2.6) (the Crum
transformation) in the case= co.

For this choice of parameter values there is a hierarchy of special solutions ratiohal in
which can be obtained by applying the BTs to the seed solutipa- (21)% for 8 = 0. For
example, for8 = 4 (4.5) admits the particular solutions

Wi = 2%2% F %2517%.
Other solutions in this hierarchy can be obtained from table 6 of [4] (on setting the parameters
w=2,k = 2%).
Okamoto [24] has introduced Hamiltonians for the Paial@guations, given as the

logarithmic derivative of a tau-function. However, the case= 0 of PIIl relevant here is
excluded in [24]. Nevertheless, it is still possible to take the Hamiltonian

H=z"wn?+2-3B-2dwz Hr —w
for this degenerate case (withdenoting the momentum conjugatew9, with tau-function
7(z) such that

H(z) = £ logt(2).
This is not quite the same as the tau-functiomtroduced in section 2 (we conjectured this
in [19]). For the similarity reduction we requite = o (z) and then we find

w = —z(logo)” — (logo)’ w = —2r = —z(logs)” — (loga)’
(wherew is obtained by the action of the second BT above), which leads to

T=o00.
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5. Conclusions

We have shown how the ACH equation introduced by Schiff is related to the KdV hierarchy,
and used this connection to construct a variety of exact solutions. We have also found solutions
in terms of a particular case of the Pairdewanscendent PlIl. By the use of the hodograph
transformation (1.4) these solutions of the ACH equation yield solutions of the FFCH equation
(1.1), and it would be interesting to study the transformed solutions. We have also found [20]
that similar methods apply to the 2 + 1 generalization of the FFCH equation introduced in [7].

Itis a pleasure to thank Orlando Ragnisco, Decio Levi, Andrew Pickering and Jeremy Schiff

for useful discussions. | would also like to thank Sergei Manakov and others present at the
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to the Leverhulme Trust for giving me a Study Abroad Studentship in Rome, and to the ARC
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